A two-phase method for extracting explanatory arguments from Bayesian networks
نویسندگان
چکیده
Errors in reasoning about probabilistic evidence can have severe consequences. In the legal domain a number of recent miscarriages of justice emphasises how severe these consequences can be. These cases, in which forensic evidence was misinterpreted, have ignited a scientific debate on how and when probabilistic reasoning can be incorporated in (legal) argumentation. One promising approach is to use Bayesian networks (BNs), which are well-known scientific models for probabilistic reasoning. For non-statistical experts, however, Bayesian networks may be hard to interpret. Especially since the inner workings of Bayesian networks are complicated, they may appear as black box models. Argumentation models, on the contrary, can be used to show how certain results are derived in a way that naturally corresponds to everyday reasoning. In this paper we propose to explain the inner workings of a BN in terms of arguments. We formalise a two-phase method for extracting probabilistically supported arguments from a Bayesian network. First, from a Bayesian network we construct a support graph, and, second, given a set of observations we build arguments from that support graph. Such arguments can facilitate the correct interpretation and explanation of the relation between hypotheses and evidence that is modelled in the Bayesian network.
منابع مشابه
Explaining Bayesian Networks Using Argumentation
Qualitative and quantitative systems to deal with uncertainty coexist. Bayesian networks are a well known tool in probabilistic reasoning. For non-statistical experts, however, Bayesian networks may be hard to interpret. Especially since the inner workings of Bayesian networks are complicated they may appear as black box models. Argumentation approaches, on the contrary, emphasise the derivatio...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملBayesian estimation of phase response curves
Phase response curve (PRC) of an oscillatory neuron describes the response of the neuron to external perturbation. The PRC is useful to predict synchronized dynamics of neurons; hence, its measurement from experimental data attracts increasing interest in neural science. This paper introduces a Bayesian method for estimating PRCs from data, which allows for the correlation of errors in explanat...
متن کاملBayesian Sample Size Determination for Joint Modeling of Longitudinal Measurements and Survival Data
A longitudinal study refers to collection of a response variable and possibly some explanatory variables at multiple follow-up times. In many clinical studies with longitudinal measurements, the response variable, for each patient is collected as long as an event of interest, which considered as clinical end point, occurs. Joint modeling of continuous longitudinal measurements and survival time...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Approx. Reasoning
دوره 80 شماره
صفحات -
تاریخ انتشار 2017